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ABSTRACT

Tiny pressuregradient forcescausedby hydrostatictruncationerrorcan overwhelm minusculepressure
gradientsthat drive shallownocturnaldrainagewindsin a mesobetanumericalmodel. In seekinga methodto
reducetheseerrors,a mathematicalformulation for pressuregradient force errorswas derivedfor a single
coordinatesurfaceboundedby two pressuresurfaces.A noniinear relationshipwas found betweenthelapse
rateof temperature,thethicknessof theboundingpressurelayer,theslopeof the coordinatesurfaceandthe
locationof thecoordinatesurfacewithin thepressurelayer.Thetheoryshowsthat pressure gradient force error
can be reducedin the numericalmodel if column pressures~re sumsof incrementalpressuresover shallow
layers. A seriesof model simulationsverify thetheory andshowthat the theory explainstheonly sourceof
pressuregradient forceerror in themodel.

I. Introduction

The problemoftruncationerrorwithin thepressure
gradientforce terms of numerical modelswritten in
sigmacoordinates(Phillips 1957)hasbeenthesubject
of considerableinvestigation(Kurihara 1968; Gary
1973;Sundqvist1975,1976;Janjic1977;Johnsonand
Uccellini 1983;Carroll et al. 1987;Janjic1989).Stud-
ies of hydrostatictruncationerror as it impactsupon
flow nearmountainsin macroscalenumericalpredic-
tion models(horizontal grid spacingof the order of
100 kin) foundthelargesttruncationerrorsoverslop-
ing terrainwheretheterrain-followingcoordinatesur-
facesdepartsignificantly from pressuresurfacesand
wherethepressuregradientbecomesthe small differ-
encebetweentwo largeterms.Someknowncausesfor
the truncationerrors are small residualsbetweenthe
two terms of the pressuregradient(Sundqvist 1975;
Carroll et al. 1987;Janjic 1977, 1989)and/orvertical
interpolationerror(Sundqvist1976;Janjic 1977;Car-
roll et al. 1987;Johnsonand Uccellini 1983).

For high resolution numerical models written in
sigma coordinates,hydrostatictruncation error can
translateinto pressuregradientforce errorsthat over-
whelmtheminusculepressureforcesthatdriveweakly
forced circulations such as shallow drainagewinds
within small streamvalleysand basinscharacteristic
of the Middle West andSouth.Thesedrainageflows
typically rangefrom 10 cm s’ to I m s~. Therefore,
weseekto find how pr~essuregradientforceerrorenters

Correspondingauthor address:Dr. Gary L. Achtemeier,South.
easternForestFire Laboratory,Box 182A, Dry Branch, GA 31020.

the model calculationsandto find waysto reduceor
eliminatetheerror.

Two testswereconductedusingmodel simulations
with initial conditionsdesignedto isolatecirculations
causedby pressuregradienterror.The resultsof these
testswereusedto developa mathematicaltheorythat
is applicablefor terrain-following coordinatesurfaces
that slope relative to pressuresurfaces.The theory
showshow the errors canbe reducedso that the nu-
mericalcalculationsare not seriouslycorrupted.Two
additional tests using model simulations verify the
theory.

2. Analysis of truncationerror

a. Pressuregradientterms

The hybrid numericalpredictionmodel is a shallow-
water model with a quasi-Lagrangianintegration
scheme.The physicaldimensionsconsistofa nocturnal
layer thatextendsfrom thesurface,Z~, to a height,H,
atthetopofthenocturnallayeranda freeatmospheric
layerthatextendsfromH to Zo,theheightof aconstant
pressurelevel a few hundredmetersabovethehighest
ground.The height of the interfaceat H is time de-
pendent.The horizontalgrid spacingis 20 m. The ver-
tical grid spacing, for this study, is the depth of the
nocturnallayer, H—Z~, andthe depthof the overlying
layer, Z0—H. The depthof the nocturnallayer is ap-
proximately 10 m on hillsides.Overbasins,thedepth
of the nocturnallayer is constrainedby the heightsof
the surroundinghills andcan pool up to several lOs
of meters.

The nocturnallayer is written in the S-coordinate
system:
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S = (H — z)/(H — Z~). (I) 40~

30•
Thex componentof thepressuregradientforce term

in the S system is

PGX = RT[3 ln(p)/c3x] + g[( 1 — S)(6H/5x)

+S(3Z5/6x)]. (2)

The hydrostatic equation is not transformed.
Consider a layer of atmosphere that is bounded on

the top by height Z1 and on the bottom by height Z2.
Thehydrostaticpressure(P2) at thebottomofthe layer
at a grid point is givenby the pressure(ps) at thetop
of thelayerandthelayermeantemperatureasfollows:

P2 =PI exP[~(Zt — Z2)] P~ ex~[~~i2j. (3)

Now considera deepair column thatconsistsof n lay-
ers. The pressure,p,,, at height,Z~, at the baseof the
column is the pressure,Po, at the top of the column
plusthe sumof the incrementalpressurescontributed
by eachlayer; that is,

Pn = Po ex~[~ ~ Yk...I.k] Po ex~[~ Yonj. (4)

Substitution of( 4) into(2) yieldsthepressuregradie~it
force term for the nocturnal layer,

PGX = g{ TG~Y/~x)

b. Isolalingpressuregradieniforceerror

Twotestsusingmodel simulationsof shallowdrain-
age flows wereconductedto isolate hydrostatictrun-
cationerror andto developa methodto reduceit. The
temperaturelapse ratesfor the nocturnal boundary
layerandthe free atmospherelayeraboveit weredry
adiabatic. This static atmosphere allows no horizontal
pressuregradientsother than pressurevariationsthat
resulted from changesin elevation.Any circulations
generatedby the model were,therefore,a measureof
thepressuregradientforceerror.flow-throughbound-
ary conditionsrequired no special boundaryformu-
lationsexceptwheretheflow wasdirectedintothedo-
main. Then extrapolatedboundaryconditionswere
used;that is, theadjacentvelocity at the previoustime
level wasassignedtotheboundary.Theresultsofthese
testsaredescribedbelow.

I) TEST I

A surface(Fig. I) that is level at 30-in elevationto
the left of thefigureslopesdownto 0 m overa distance
of 300 in. The maximum slope along the hillside is
0.15.A small valley separatesthehillside from a small
ridge 12 in high locatednearthecenterof thedomain.
Elevations descendgradually from the ridge into a

20
I
C,

I 10~

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
DISTANCE (KU)

FIG. I. Initial conditions for test I showing shapeof land form
and overlying nocturnal layer (dashedline).

broadbasin.The land form is orientedalong the x-
axis. It extendsinfinitely in y and,therefore,all deriv-
ativeswith respectto y are zero.The50 grid pointsare
spacedat 20-in intervalssothat thelandform spansa
distanceof 1 km. A 10-in deepnocturnalboundary
layer (dashed line in Fig. 1) paralleledthe surface.

‘Resultsafter21 mm ofintegrationareshowninFig.
2a.The pressuregradienterror systematicallyforced
downslopeflow. Error velocitiesof approximately10
cm s~’ were found along the steeplyslopinghillside,
Massconvergenceinto thevalleydoubledthedepthof
the nocturnallayer (uppersolid line).

The maximum error velocity after 60 mm was 19
cm s~~’ (Fig. 2b). Mass convergenceinto the valley
tripled the depthof the nocturnallayer. In addition,
the error velocity reverseddirection andwasflowing
upslopealongthesideof theridge atdistancesbetween
0.4and0.5 km.

The behaviorof the error velocitiesnear the ridge
needsfurtherexplanation.Themeanpressuregradient
for the nocturnallayerwasusedto calculatetheerror
velocity.Therefore,theresultsin Fig.2 arefor the layer,
meanerror velocity. During the courseof the simu-
lation, massmoundedup the nocturnallayerin the
valley to theextentthatafter60 mm of integrationthe
slopeof thecoordinatesurfaceat thetop of the noc-
turnal layerhadreversedandbecomesteeperthanthe
slope of the ridge. Therefore,the meanslope of the
coordinatesurfacesfor the layerchangedthe sign of
the meanerror pressuregradient.The latter reversed
theerror velocity along the left side of the ridge.

2) TEST 2

The finding from test I that the error velocity de-
pendsupon themeanslopeofthecoordinatesurfaces,
not just the slopeof theterrain,wasusedto designa
secondtestto determineif errorvelocities are excited
if the surfaceis flat but the coordinatesurfacewithin
the domain slopesas in Fig. I. All of the initial con-
ditionswere identical to thoseof testI with theexcep-
tion of the flat surface.Thetopof the nocturnallayer
at H (Fig. 3) slopesas in test I. Figure 4a showsthat
pressuregradienterrorsafter11 mm of integrationhave
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FIG. 2. Test I errorvelocities(shortbarb = 5 cm
5~i; long barb

= 10cm5C) andgrowth of error height of the nocturnal layer after
(a) 21 mm and(b) 60 mm of modelintegration.
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F19.4. Test2 error velocitiesand growth of error height ofthe
nocturnallayerafter(a) II mm and(b) 60 mm ofmodelintegration.

c. A iheoryfor pressuregradieniforceerror

forced error velocities down the slope of the coordinate
surfaceat H. By 60 mm of integration (Fig. 4b),the
error velocities blow continuously from left to right.

Both testshaveshownthat the directionsand
nitudesof the error velocitiesdependupon the slopes
of thecoordinatesurfaces.In thesecondtest, the only
differencesbetweenpressurescalculatedat adjacent
grid points were the elevationsof the interface,H.
Thoughthe total depth overwhich the pressurewas
calculatedwas500 in for all grid points,thedepthsof
the nocturnal layer and of the free atmospherethat
makeup the column were not the same.Therefore,
one should expect the hydrostatic pressures calculated
overunequalfinite intervalsto be slightly different at
adjacentgrid points.Thus,hydrostatictruncationerror
is not a problemof truncationbut a result of approx-
imating an integral by vertically averagingthe tem-
peratureoverfinite layers.Theinexactitudethat results
from approximatingthehydrostaticequationhasbeen
extensivelydocumentedin theliteraturealreadycited.
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Thepressuregradientforceerroris nowdefinedfrom
a mathematicalperspective.The derivationis modeled
afterthe initial conditionsfor test2 (Fig. 3). Thetop
of the domain is definedas a pressuresurface.The
lowercoordinatesurfaceis flat andalsoa pressuresur-
face. The mathematicalexpressionis derivedforpres-
suregradientforceerroratthelowercoordinatesurface.
At the surface,S = I andZ,, = 0, andthe height cor-
rection term of (5) vanishes.The pressuregradient
force term is thus,

PGX = gT(~Y/e3x). (6)

Considerin Fig. 5 a vertical crosssectionof atmo-
sphereboundedon thesidesby two grid columnsand
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FIG.5. Simplegrid columnboundedon topandbottomby constant
pressuresurfaces.Slopingcoordinatesurfaces(solid anddashedlines)
passthroughthegrid column asshown.
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FIG. 3. Initial conditionsfor test 2 showingflat land form and
overlyingnocturnallayer(dashedline).



226 MONTHLY WEATHER REVIEW VOLUME 119

on the top(Z0) andbottom(Z2)by constant pressure
surfaces.The isothermsare horizontal andthe tem-
peraturelapserateis a constantP. If the hydrostatic’
pressureisapproximatedoverthe depth,Z2 — Z0, then
there exists a small residual given by

YR
1 7EH=Po[exP~J }exp(g

20/)j.
oRT ()

However,the residualat the neighboringgrid point is
the same.Therefore,the horizontal derivativeof EH
vanishesin the calculationof the pressuregradient
error.

Pressuregradientforce errorsappearwhenthe cal-
culation of Y2o is donedifferently at neighboringgrid
points. Let anS-coordinatesurfaceintersectthe layer
in Fig. 5, passing through it at depth Z1 at thefirst grid
column and at depth Z3 at the secondgrid column;
bothdepthsbeing measureddownward from the top.
Forthe left grid column(4) yields

Z2-ZI ZI—ZO
Y20=y21±y1o= ±

andfor the right grid column,

Z2—Z3 Z3—Zo
Y2o—y23+Y30— +If23

From (6) the pressuregradientforceerror is

PGE= gT2/Ax

wheree = — Y20. Clearly, e is proportionalto the
pressuregradientforce error with the proportionality
constantfor the conditionsspecifiedby (10)beinggT2/
Ax. Therefore,the behaviorof determinesthe be-
havior of the pressuregradientforce error. From the
definitions(8) and(9),

[Z2—Z3 z3—Zo _ Z2-Zj _ Zi-Zol
E

21 + _ ____ ____

[T
2+T3 T3+T0 T2+T1 T1+ToJ

(II)

LetZo — Z, = AZ,. Furthermore,let If, T0 + PAZ~
whereP is the lapserateof temperatureover the in-
terval. SinceAT1 = PAZ, is only a few percentof the
total temperature,it may be neglectedfrom the de-
nominatorof the errorequation.After somealgebraic
expansion,(II) becomesthe cubic polynomial,

e = (aTo
3+ bT

0
2P±cT

0P
2+ dP3)/(2To4) (12)

where

a = 0,
b = 0,
c = 4AZ

2[AZ1(AZ1 — AZ2) + AZ3(AZ2 — AZ3)],
d = 4AZ1AZ2AZ3(AZ1 — AZ3).

Define a and a’ to representthe fraction of the total
depthof thelayerAZ2 and the S-coordinatesurfaceis
found from the top of the layer. Therefore, let a

— AZ1 /AZ2 and a’ = AZ3/AZ2. Equation(12) sim-
plifies to

PAZ2 r’i....’~l
= 2P

2 rW\a~ To iaa~aa)JJ

(13)

where

w(a, a’) = a(l — a) — a’(l — a’).

Both termsinvolving a and a’ are of the sameorder
of magnitude.Therefore,for temperaturelapserates
less than the dry adiabaticlapserate and for layer
thicknesseslessthan 1 kin, the secondterm of (‘13) is
at leasttwo ordersof magnitudesmallerthan thefirst.
Upon neglecting the second term, the equation for the
pressuregradientforce error is

gT
2 F /AZ2\

3
PGE~— I ~2I?2 II

Ax [ \2To/ w(a~a)j.
(14)

(8) The pressuregradient force error vanishesas the
lapse rate of temperature approaches the isothermal
lapse rate. PGEis largest when P is dry adiabaticor if
thereexists a largetemperatureinversion.The rela-

(9) tionshipbetweenPGEandthe squareof P confirms
the resultsof Carroll et al. (1987)who observedthat
spurioushorizontalaccelerationsincreasedby 100 for
eachincreaseby 10 of the lapserate.

(10) Thenonlinearfunction w( a, a’) carriesinformation
on theslopeof the coordinatesurfaceandthe height
at which thecoordinatesurfaceintersectsthecolumn.
The relationshipsbetweena, a’, and w(a, a’) and
thereforePGEare shownin Fig. 6. The quantityw(a,
a’) hasbeen normalizedby its maximum numerical

FIG. 6. The distribution of normalized w(a, a’) with
respecttoa and a’.



JANUARY 1991 NOTES AND CORRESPONDENCE 227

valueof 0.25. Given thata anda’ arefractionsof the
depthof thepressurelayerasmeasureddownwardfrom
the top, Fig. 6 canbe interpretedas follows:

I) When(a a’), the S-coordinatesurfaceis hor-
tzontalandthusbecomesa constantpressuresurface.
Thepressuregradientforceerroris zero for this trivial
case.Therefore,w(a, a’) = 0 alongthe ascendingdi-
agonal.

2) If the S-coordinatesurfaceislocatedsuchthat a
— I — a’, the pressure gradient forceerrorvanishesand
w(a, a) = 0 along the descending diagonal in Fig. 6.
The requirementis that the coordinate surface is lo-
catedthesamedistancefrom thetopof a grid column
as it is from the bottom of an adjacentgrid column,
bothcolumn depthsbeing equal.

3) Thesign of PGEisdeterminedby both the slope
of the coordinatesurfaceandits position within the
column.ConsiderforexampletheS-coordinatesurface
locatedat thefirst grid column sothat a = 0.3. Then,
a = 0.5 yields w(a,a’) <0, but if a’ = 0.8, w(a, a’)
>0.

The complex interplay betweenthe location and
slopeofthecoordinatesurfacemakestheinterpretation
of w(a, a’) somewhatambiguous.Furtherinsight in~y
be gainedthroughexpressinga’as a function of aand
theslope13 of the coordinatesurface.ReferenceFig. 5
for a schematicof therelationshipof the variabl~sthat
takepart in the transformation.From the definitions,
a = AZ1 /AZ2 anda’ = AZ3/AZ2,we find

a = a — Axtan(13)/AZ2.

The quantity Ax/AZ2 = 1 is chosen to isolate slope
tnformationin 13. Substitutionof thesedefinitionsinto
w(a, a’) yields,

w(a,13)=tan(13)[l —2a+tan(13)I. (16)

Figure 7 showsthat the distribution of w( a, 13) can
beof eithersign dependingupon wherethecoordinate
surfaceentersthe grid column (a carriesthis infor-
mation).Therefore,pressuregradientforce errormay
actto drive error velocitiesdownslopeat somepoints
in a model anddrive error velocitiesupslopeat other
points.Thecurvesfor a in the0.7—0.8 rangearesimilar
to the distributionof normalizedspurioushorizontal
accelerationfound by Carroll et al. (1987) for thesame
rangeof slopeangles.The interpretationof the shape
of thesecurvesdiffers from that of Carroll et al., how-
ever,becausein thepresentcase,thepressuregradient
force error is calculatedfor thesurface.The surfaceis
horizontal, coincidentwith a surfaceof constantpres-
sure,and thepressuregradientisgivenby a singleterm.

Only the a term [second term in bracketsin (16)]
is negativeand,therefore,only the location wherethe
coordinatesurfaceentersthe grid column can force
w(a, 13) < 0. Figure 8 gives a graphicalperspectiveof
seven entry points for a surface that slopes at 200within

FIG. 7. Relationship betweenw(0, ~)andslopeangleof a coor-
dinatesurfacefor selectedentrypointsinto thegrid column. Entry
pointsgivenin termsof theratio a.

a regular grid column. Figure 9 shows that w( a,13) for
these seven placements decreases linearly astheentry
point is moveddown the grid column from a = 0.4—
1.0.Thequantity w( a, 13) changessignif thecoordinate
surface enters the grid column about two-thirds down

(15) from thetop(approximatelya = 0.7). Thesign change
occursat preciselywherea = 1 — a’ in Fig. 6.

Onecan use(14) to calculatethe maximumerror
velocity underthe conditionsof test 1, andcompare
theresultswith error velocitiesobtainedfrom the nu-
merical model after 21 mm of integration.The cal-
culationwasdonefora slopeequalto theaverageslope
of a 120-in sectionof the steepestpart of the hillside
shown in Fig. 1. This interval was chosenbecausea
particlemovingat 10 cm s-‘ for20 mm will transverse
120 in. The maximumerror velocity wasobservedat
thehillside location(seeFig.2). In addition,therelative
locationsof thetop of the nocturnallayerandthe top
of the grid column were the sameas in the numerical
model. The w(a, a’) for the hillside location is given
by the solid circle nearthe upperright cornerof Fig.
6. Substitutionof the appropriatevariablesinto (14)
and multiplying the resultingpressuregradientforce
errorby 21 mm gavea predictedmaximumerrorve-
locity alongthehillside of 10.5cm s’. Themaximum
error velocity found in the test I simulation was9.5
cm s~.Therefore,allowing for theobviousdifferences
between methods for obtaining error velocities, it is
found that (14) explains all of the maximum error
velocity observed from the numerical model. The
modelsensitivity teststhat follow furtherconfirm this
finding.

0.. 25 04 O>~
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d. Reducing pressuregradienterror

Variousmethodsto reducethePOEhavebeenpre-
sentedin the literature.Most of the methodsinvolve
thedevelopmentofspecializedfinite differenceschemes
that reduce or eliminate POE. Another approach has
beento define an exactform for the temperatureto
eliminatethehydrostatictruncationerror.In theabove
approaches,however,thefunctional form for thePOE
may notbe thatgiven in (14).

As regardsthemesobetanumericalmodel,thepres-
suregradientforce errorcanbe reducedin two ways.
First, in calculatingthe hydrostaticpressure,choose
theheightintervalcontainingtheS-coordinatesurface
so that the condition a = 1 — a’ is satisfiedexactly.
Then w(a,a’) = 0 andthe POEvanishes.

Thesecondapproachto reducingthePOEisto make
AZ2 assmallaspossible.Equation(14)showsthat the
PGEis reduceda 1000-fold for every 10-fold decrease
in theverticalseparation.Two newtestsweredesigned
to further showthat (14) explainsthe errorvelocities
observedin the numericalmodel.

I) TEST 3

Five model runsweremadeusingthe sameinitial
conditionsasfor Test 1. Foreachrun, the hydrostatic ‘~

pressurefor the atmosphericcolumn from 500 in to
thegroundwascalculatedby dividing thecolumnsinto
successivelythinner layers and obtaining the final
pressureasthesumof incrementalpressures.The layer
thicknesseswere250, 100, 50, 20 and 10 in. Thenthe
maximum error velocities obtainedfrom the model
simulationswerecomparedwith maximum error ye-
locities predictedby (14). As the layerthicknessesare
madesmaller,thereareincreasingpossibilitiesthat the
coordinatesurfaceandthe pressuresurfaceswill cross
somewherebetweengrid pointsat oneor morepoints

0. 00

0. 25

0. 50

0.75

1. 00
Ax

• FIG. 9. Relationshipbetweenw(a,~)and a for a coordinate
surfaceslopingat 200.

within thedomain.No effort wasmadeto testfor this.
If pressuresurface—coordinatesurfaceintersectionsin-
creasethePGE,the errorsshouldbeobservablein the
simulations.

The resultsof thefive runsaresummarizedinTable
I for error growth after 60 mm of integration. The
maximumerror velocity andthe growth of the maxi-
mum errorheight of the nocturnallayerexpressedas
a percentageof the initial heightare given for the five
layer thicknesses.The velocity errorsfor test I (UL)
are included for reference.Eachreductionin thelayer
thicknesswasaccompaniedby a significant reduction
in the error velocities and heights. When the 10 in

thicknesswasused,the maximumerror velocity was
only 30 ~ims’ andthe maximumerror in the height
of the nocturnal layer wasonly 1.7 cm. The fourth
column of TableI givesthemaximumerror velocities
predictedby (14).Giventhedifferencesin themethods
for calculatingthe error velocities,thesecomparefa-
vorably in magnitudewith the maximumerror veloc-
ities found from the numericalsimulations.

2) TEST 4

Are thereany othersourcesofpressuregradienterror
within the model not explained by (14)? The initial
conditionsfor the model run were identical as those
for test I with the exceptionthat the lapserateof tem-
peraturewasisothermalinsteadof dry adiabatic.Since
~is zero for an isothermalatmosphere,anygrowth of
error velocitiesduring test4 mustarisefrom a source

Z5.
a

—0. 1.0
2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

FIG. 8. Sevenplacementsof a 200 slopecoordinatesurfacewithin
a grid column boundedby pressuresurfaces.
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TABLE I. Maximum errorvelocitiesandpercent growth of maximum error heights after 60 mm of integration
of numerical model for selectedlayer thicknessesand maximum error velocities predicted from theory.

Max layer
thickness(in)

Max error velocity
(cm s”)

Percent growth
max error height

Predictedmax
errorvelocity

(cms’)

UL 19.4 208.0
250 5.2 125.0 8.3
100 0.72 19.2 1.2
50 0.11 3.3 0.23
20 0.024 0.81 0.007
10 0.003 0.17 0.002

other than horizontal variationsof hydrostatictrun-
cationerror. The model ran for 60 mm andgenerated
no errorvelocity.

3. Discussion

Whenthe pressure—heightrelationshipis calculated
throughan approximationto the integralhydrostatic
equation,there will remaina small residual“hydro-
statictruncation”error.If thecoordinatesurfacesslope
relativeto constantpressuresurfaces,the hydrostatic.
truncationerrorswill be slightly different at adjacent
grid points.The resultingtiny pressuregradientforce
errors are sufficient to generateerror velocitieslarge
enough to overwhelm meteorologicalvelocities pro-
ducedin a mesobeta-scalewind model written ~t ter-
rain-following coordinates.

A mathematicalanalysisfoundthatpressuregradient
forceerrordependsupon thelapserateof temperature,
the thicknessof the pressurelayerthroughwhich passes
a slopingcoordinatesurface,theslopeofthe coordinate
surface, and the location of the coordinate surface
wIthin the layer. PGEcan be of eithersign depending
uponthe location of thecoordinatesurfacewithin the
layer.

The equationshowedtwo ways in which the PGE
could be reducedor eliminated.Error velocitieswere
reducedby calculatinghydrostaticpressuresasthesum
of incrementalpressuresovershallowlayers. It would
seemthat theonlylimitation oncompletelyeliminating
PGEis the numberof calculationsrequiredto obtain
the total column pressure.However, Mahrer (1984)
found errorsin horizontalgradientsof meteorological
fields whenthedistancebetweentwo verticalgrid points
is smallerthan the distancebetweentwo horizontally
adjacentterrain-following coordinatepoints.Although
thegeometryofthedevelopmentpresentedherediffers
from the problemdesign of Mahrer, it is recognized
thatallowing coordinatesurfacesto crosspressuresur-
facesbetweengrid points mayincreasethe PGE.

The curvesof w(a, a’) in Fig. 7 all terminateat the
upper right of the grid column in Fig. 5. The positive
curvatures are an indication that much larger w(a, a’)
should be expectedif the coordinatesurfacecrossed

thepressuresurfacebetweengrid points.In thatevent,
the coordinate surface intersects the grid column above
Z0 asisshownby thedashedline in Fig. 5.Theinterval
AZ3 is directedupward(the conventionof integration
is downward)andAZ3 is negative.Therefore,w(a, a’)
— a( I — a) + a’( 1 + a’). For steepercoordinatesur-
facesslopes,thefirst termbecomesnegligibleandw( a,
a’) = w(a’) (a’)

2. Thus,when coordinatesurfaces
cross pressuresurfacesbetweengrid points, growth
of w(a’) can offset small AZ

2 and causegrowth in
the PGE.

Mahrer suggestedthat the horizontal grid spacing
be reduced so that the sloping coordinatesurfaces
would be containedwithin a singlepressureinterval.
The horizontal grid spacingof 20 in usedthroughout
this studywassufficient to satisfy Mahrer’scritena.
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